Erweiterte Suche und Struktursuche
 

Zeichenfläche leeren Suchen Bitte warten...
Erweiterte Suche und Struktursuche
    VIP Event

    New access to High-Value Trifluoromethylated Compounds

    Direct Cupration of Fluoroform
    Speaker – Vladimir Grushin

    Direct Cupration of Fluoroform:
    From Waste to High-Value Trifluoromethylated Compounds

    Vladimir V. Grushin
    K&G Technologies LLC, WY, USA

    Trifluoromethylated building blocks and intermediates are in increasingly high demand for the synthesis of agrochemicals, pharmaceuticals, and specialty materials.1 Readily available fluoroform (CHF3), a side-product of the fluoropolymer and fluorochemicals industries and a potent greenhouse gas, is by far the best CF3 source for trifluoromethylation reactions.1,2 However, chemoselective activation of highly inert fluoroform is exceedingly challenging. In recent years, a novel promising methodology has emerged for CHF3 activation with transition metals. This presentation will focus on our contributions to the area (Scheme below), including (i) the first reactions of direct cupration1-5 and palladation6 of fluoroform to furnish CuCF3 and PdCF3 complexes in nearly quantitative yield; (ii) the development of new, lowcost, highly efficient, and selective fluoroalkylation methods with our CuRf (Rf = CF3, C2F5) reagents prepared from CHF3 and C2F5H;7-14 and (iii) remarkable mechanisms of the cupration of CHF35 and aromatic trifluoromethylation reactions with CuCF3.15,16

    Direct Cupration of Fluoroform: From Waste to High-Value Trifluoromethylated Compounds

    Keywords: Fluoroform · Trifluoromethylation · Pentafluoroethylation · Reaction Mechanisms

    1Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. 2Grushin, V. V. Chim. Oggi 2014, 32, 81. 3Zanardi, A; Novikov, M. A.; Martin, E.; Benet-Buchholz, J.; Grushin, V. V. J. Am. Chem. Soc. 2011, 133, 20901. 4Mazloomi, Z.; Bansode, A.; Benavente, P.; Lishchynskyi, A.; Urakawa, A.; Grushin, V. V. Org. Process Res. Dev. 2014, 18, 1020. 5Konovalov, A. I.; Benet-Buchholz, J.; Martin, E.; Grushin, V. V. Angew. Chem. Int. Ed. 2013, 52, 11637. 6Takemoto, S.; Grushin, V. V. J. Am. Chem. Soc. 2013, 135, 16837. 7Novák, P.; Lishchynskyi, A.; Grushin, V. V. Angew. Chem. Int. Ed. 2012, 51, 7767. 8Novák, P.; Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2012, 134, 16167. 9Lishchynskyi, A.; Novikov, M. A.; Martin, E.; Escudero-Adán, E. C.; Novák, P.; Grushin, V. V. J. Org. Chem. 2013, 78, 11126. 10Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2013, 135, 12584. 11Lishchynskyi, A.; Berthon, G.; Grushin, V. V. Chem. Commun. 2014, 50, 10237. 12Lishchynskyi, A.; Mazloomi, Z.; Grushin, V. V. Synlett 2015, 26, 45. 13Romine, A. M.; Nebra, N.; Konovalov, A. I.; Martin, E.; Benet-Buchholz, J.; Grushin, V. V. Angew. Chem., Int. Ed. 2015, 54, 2745. 14Panferova, L. I.; Miloserdov, F. M.; Lishchynskyi, A.; Martínez Belmonte, M.; Benet-Buchholz, J.; Grushin, V. V. Angew. Chem., Int. Ed. 2015, 54, 5218. 15Konovalov, A. I.; Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2014, 136, 13410. 16Nebra, N.; Grushin, V. V. J. Am. Chem. Soc. 2014, 136, 16998.